Stimulation of JH biosynthesis by the corpora allata of adult female Aedes aegypti in vitro: effect of farnesoic acid and Aedes allatotropin.
نویسندگان
چکیده
Previous studies have demonstrated that the synthesis of juvenile hormone (JH) by the isolated corpora allata (CA) complex in vitro as well as the JH titer in the yellow fever mosquito Aedes aegypti are elevated before feeding and low after a blood meal. In the present study, we used an in vitro radiochemical assay to analyze the effect of farnesoic acid (FA) and Aedes allatotropin (Aedes-AT) on the biosynthesis of JH and methyl farnesoate (MF) by the isolated CA complex of A. aegypti adult female. CA complex from day-0 females (0-1 h after emergence) exhibited a low basal juvenile hormone III (JH III) biosynthetic activity and did not respond to either allatotropic or FA stimulation. However, incubation of CA complexes from newly emerged females with Aedes-AT plus FA resulted in very high production of JH III. This is the first report suggesting that allatotropin makes corpora allata in newly emerged females capable for JH biosynthesis. When we studied CA complexes dissected from females 1 day after emergence, the stimulatory action of Aedes-AT was strong and dose-dependent, with maximum stimulation in the range of 10(-8)-10(-9) mol l(-1), suggesting that Aedes-AT is indeed a true allatotropin (a molecule with allatotropic activity) in A. aegypti. The addition to the culture medium of 40 micro mol l(-1) FA, a JH precursor, resulted in a 9-fold increase in JH III biosynthesis in 2-, 4- and 6-day-old sugar-fed females. The two major labeled products synthesized by the stimulated CA complex were identified as JH III and MF by RP-HPLC and GC-MS. Treatment of CA complexes with FA, but not Aedes-AT, resulted in an increase in MF. Application of both Aedes-AT and FA to the CA complexes of 2-, 4- and 6-day-old females resulted in the same effects as FA alone. These data suggest that in sugar-fed females, FA and Aedes-AT exert different effects on the terminal steps in JH biosynthesis.
منابع مشابه
1,5-Disubstituted imidazoles inhibit juvenile hormone biosynthesis by the corpora allata of the mosquito Aedes aegypti.
We investigated the effect of fifteen 1,5-disubstituted imidazoles (1,5-dis) on juvenile hormone III (JH III) and methyl farnesoate (MF) biosynthesis by the corpora allata (CA) of the mosquito Aedes aegypti in vitro. Four compounds (TH-35, TH-83, TH-62 and TH-28) significantly decreased JH biosynthesis in the CA dissected from 3-day old sugar-fed females. The decrease of JH synthesis was not al...
متن کاملFunctional characterization of an allatotropin receptor expressed in the corpora allata of mosquitoes.
Allatotropin is an insect neuropeptide with pleiotropic actions on a variety of different tissues. In the present work we describe the identification, cloning and functional and molecular characterization of an Aedes aegypti allatotropin receptor (AeATr) and provide a detailed quantitative study of the expression of the AeATr gene in the adult mosquito. Analysis of the tissue distribution of Ae...
متن کاملTerminal steps in JH biosynthesis in the honey bee (Apis mellifera L. ): developmental changes in sensitivity to JH precursor and allatotropin.
Juvenile hormone (JH) is considered the prime endogenous signal for the induction of queen development in honey bees (Apis mellifera L.). At the beginning of the last (5th) larval stadium, worker corpora allata synthesize less JH than queen corpora allata as a consequence of a limited production of JH precursors and a caste- and stage-specific block of the terminal step in JH biosynthesis. As p...
متن کاملNutritional regulation of JH synthesis: a mechanism to control reproductive maturation in mosquitoes?
Juvenile hormone (JH) titers must be modulated to permit the normal progress of development and reproduction in mosquitoes. In adult female Aedes aegypti, JH levels are low at adult eclosion, elevated in sugar-fed females and low again after a blood meal. Although degradation plays a role, JH titer is fundamentally determined by the rate of biosynthesis in the corpora allata gland (CA). CA from...
متن کاملBiochemical, molecular, and functional characterization of PISCF-allatostatin, a regulator of juvenile hormone biosynthesis in the mosquito Aedes aegypti.
Aedes aegypti PISCF-allatostatin or allatostatin-C (Ae-AS-C) was isolated using a combination of high performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA). The matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrum of positive ELISA fractions revealed a molecular mass of 1919.0 Da, in agreement with the sequence qIRYRQCYFNPISCF, with bridged cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 206 Pt 11 شماره
صفحات -
تاریخ انتشار 2003